- **5.9** A car of mass m starts from rest and acquires a velocity along east $\mathbf{v} = v \,\hat{\mathbf{i}} \, (v > 0)$ in two seconds. Assuming the car moves with uniform acceleration, the force exerted on the car is
 - (a) $\frac{mv}{2}$ eastward and is exerted by the car engine.
 - (b) $\frac{mv}{2}$ eastward and is due to the friction on the tyres exerted by the road.
 - (c) more than $\frac{mv}{2}$ eastward exerted due to the engine and overcomes the friction of the road.
 - (d) $\frac{mv}{2}$ exerted by the engine.

(3) $a = \frac{v-0}{t} = \frac{v}{2}$ $F = ma = \frac{mv}{2}$ Since, car is moving towards east, the force is exerted eastward by the friction on the tyres exerted by the road.